Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Clinical imaging ; 2023.
Article in English | EuropePMC | ID: covidwho-2268592

ABSTRACT

Objectives We aimed to correlate lung disease burden on presentation chest radiographs (CXR), quantified at the time of study interpretation, with clinical presentation in patients hospitalized with coronavirus disease 2019 (COVID-19). Material and methods This retrospective cross-sectional study included 5833 consecutive adult patients, aged 18 and older, hospitalized with a diagnosis of COVID-19 with a CXR quantified in real-time while hospitalized in 1 of 12 acute care hospitals across a multihospital integrated healthcare network between March 24, 2020, and May 22, 2020. Lung disease burden was quantified in real-time by 118 radiologists on 5833 CXR at the time of exam interpretation with each lung annotated by the degree of lung opacity as clear (0%), mild (1–33%), moderate (34–66%), or severe (67–100%). CXR findings were classified as (1) clear versus disease, (2) unilateral versus bilateral, (3) symmetric versus asymmetric, or (4) not severe versus severe. Lung disease burden was characterized on initial presentation by patient demographics, co-morbidities, vital signs, and lab results with chi-square used for univariate analysis and logistic regression for multivariable analysis. Results Patients with severe lung disease were more likely to have oxygen impairment, an elevated respiratory rate, low albumin, high lactate dehydrogenase, and high ferritin compared to non-severe lung disease. A lack of opacities in COVID-19 was associated with a low estimated glomerular filtration rate, hypernatremia, and hypoglycemia. Conclusions COVID-19 lung disease burden quantified in real-time on presentation CXR was characterized by demographics, comorbidities, emergency severity index, Charlson Comorbidity Index, vital signs, and lab results on 5833 patients. This novel approach to real-time quantified chest radiograph lung disease burden by radiologists needs further research to understand how this information can be incorporated to improve clinical care for pulmonary-related diseases.. An absence of opacities in COVID-19 may be associated with poor oral intake and a prerenal state as evidenced by the association of clear CXRs with a low eGFR, hypernatremia, and hypoglycemia.

2.
Med Decis Making ; 43(4): 445-460, 2023 05.
Article in English | MEDLINE | ID: covidwho-2239028

ABSTRACT

INTRODUCTION: Clinical prediction models (CPMs) for coronavirus disease 2019 (COVID-19) may support clinical decision making, treatment, and communication. However, attitudes about using CPMs for COVID-19 decision making are unknown. METHODS: Online focus groups and interviews were conducted among health care providers, survivors of COVID-19, and surrogates (i.e., loved ones/surrogate decision makers) in the United States and the Netherlands. Semistructured questions explored experiences about clinical decision making in COVID-19 care and facilitators and barriers for implementing CPMs. RESULTS: In the United States, we conducted 4 online focus groups with 1) providers and 2) surrogates and survivors of COVID-19 between January 2021 and July 2021. In the Netherlands, we conducted 3 focus groups and 4 individual interviews with 1) providers and 2) surrogates and survivors of COVID-19 between May 2021 and July 2021. Providers expressed concern about CPM validity and the belief that patients may interpret CPM predictions as absolute. They described CPMs as potentially useful for resource allocation, triaging, education, and research. Several surrogates and people who had COVID-19 were not given prognostic estimates but believed this information would have supported and influenced their decision making. A limited number of participants felt the data would not have applied to them and that they or their loved ones may not have survived, as poor prognosis may have suggested withdrawal of treatment. CONCLUSIONS: Many providers had reservations about using CPMs for people with COVID-19 due to concerns about CPM validity and patient-level interpretation of the outcome predictions. However, several people who survived COVID-19 and their surrogates indicated that they would have found this information useful for decision making. Therefore, information provision may be needed to improve provider-level comfort and patient and surrogate understanding of CPMs. HIGHLIGHTS: While clinical prediction models (CPMs) may provide an objective means of assessing COVID-19 prognosis, provider concerns about CPM validity and the interpretation of CPM predictions may limit their clinical use.Providers felt that CPMs may be most useful for resource allocation, triage, research, or educational purposes for COVID-19.Several survivors of COVID-19 and their surrogates felt that CPMs would have been informative and may have aided them in making COVID-19 treatment decisions, while others felt the data would not have applied to them.


Subject(s)
COVID-19 , Decision Making , Humans , COVID-19 Drug Treatment , Prognosis
3.
BMC Med ; 20(1): 456, 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2139292

ABSTRACT

BACKGROUND: Supporting decisions for patients who present to the emergency department (ED) with COVID-19 requires accurate prognostication. We aimed to evaluate prognostic models for predicting outcomes in hospitalized patients with COVID-19, in different locations and across time. METHODS: We included patients who presented to the ED with suspected COVID-19 and were admitted to 12 hospitals in the New York City (NYC) area and 4 large Dutch hospitals. We used second-wave patients who presented between September and December 2020 (2137 and 3252 in NYC and the Netherlands, respectively) to evaluate models that were developed on first-wave patients who presented between March and August 2020 (12,163 and 5831). We evaluated two prognostic models for in-hospital death: The Northwell COVID-19 Survival (NOCOS) model was developed on NYC data and the COVID Outcome Prediction in the Emergency Department (COPE) model was developed on Dutch data. These models were validated on subsequent second-wave data at the same site (temporal validation) and at the other site (geographic validation). We assessed model performance by the Area Under the receiver operating characteristic Curve (AUC), by the E-statistic, and by net benefit. RESULTS: Twenty-eight-day mortality was considerably higher in the NYC first-wave data (21.0%), compared to the second-wave (10.1%) and the Dutch data (first wave 10.8%; second wave 10.0%). COPE discriminated well at temporal validation (AUC 0.82), with excellent calibration (E-statistic 0.8%). At geographic validation, discrimination was satisfactory (AUC 0.78), but with moderate over-prediction of mortality risk, particularly in higher-risk patients (E-statistic 2.9%). While discrimination was adequate when NOCOS was tested on second-wave NYC data (AUC 0.77), NOCOS systematically overestimated the mortality risk (E-statistic 5.1%). Discrimination in the Dutch data was good (AUC 0.81), but with over-prediction of risk, particularly in lower-risk patients (E-statistic 4.0%). Recalibration of COPE and NOCOS led to limited net benefit improvement in Dutch data, but to substantial net benefit improvement in NYC data. CONCLUSIONS: NOCOS performed moderately worse than COPE, probably reflecting unique aspects of the early pandemic in NYC. Frequent updating of prognostic models is likely to be required for transportability over time and space during a dynamic pandemic.


Subject(s)
COVID-19 , Humans , Prognosis , COVID-19/diagnosis , Hospital Mortality , ROC Curve , New York City
4.
Nat Commun ; 13(1): 6812, 2022 Nov 10.
Article in English | MEDLINE | ID: covidwho-2117209

ABSTRACT

Clinical prognostic models can assist patient care decisions. However, their performance can drift over time and location, necessitating model monitoring and updating. Despite rapid and significant changes during the pandemic, prognostic models for COVID-19 patients do not currently account for these drifts. We develop a framework for continuously monitoring and updating prognostic models and apply it to predict 28-day survival in COVID-19 patients. We use demographic, laboratory, and clinical data from electronic health records of 34912 hospitalized COVID-19 patients from March 2020 until May 2022 and compare three modeling methods. Model calibration performance drift is immediately detected with minor fluctuations in discrimination. The overall calibration on the prospective validation cohort is significantly improved when comparing the dynamically updated models against their static counterparts. Our findings suggest that, using this framework, models remain accurate and well-calibrated across various waves, variants, race and sex and yield positive net-benefits.


Subject(s)
COVID-19 , Humans , Prognosis , Pandemics , Cohort Studies , Calibration , Retrospective Studies
5.
Vaccines (Basel) ; 10(9)2022 Sep 10.
Article in English | MEDLINE | ID: covidwho-2033183

ABSTRACT

We assessed the frequency and correlates of COVID-19 vaccine hesitancy before Canada's vaccine rollout. A cross-sectional vaccine hesitancy survey was completed by consecutive patients/family members/staff who received the influenza vaccine at McGill University affiliated hospitals. Based on the self-reported likelihood of receiving a future vaccine (scale 0-10), the following three groups were defined: non-hesitant (score 10), mildly hesitant (7.1-9.9), and significantly hesitant (0-7). Factors associated with vaccine hesitancy were assessed with multivariate logistic regression analyses and binomial logistic regression machine learning modelling. The survey was completed by 1793 people. Thirty-seven percent of participants (n = 669) were hesitant (mildly: 315 (17.6%); significantly: 354 (19.7%)). Lower education levels, opposition and uncertainty about vaccines being mandatory, feelings of not receiving enough information about COVID-19 prevention, perceived social pressure to get a future vaccine, vaccine safety concerns, uncertainty regarding the vaccine risk-benefit ratio, and distrust towards pharmaceutical companies were factors associated with vaccine hesitancy. Vaccine safety concerns and opposition to mandatory vaccinations were the strongest correlates of vaccine hesitancy in both the logistic regressions and the machine learning model. In conclusion, in this study, over a third of people immunized for influenza before the COVID-19 vaccine rollout expressed some degree of vaccine hesitancy. Effectively addressing COVID-19 vaccine safety concerns may enhance vaccine uptake.

6.
J Med Internet Res ; 23(2): e24246, 2021 02 10.
Article in English | MEDLINE | ID: covidwho-1573886

ABSTRACT

BACKGROUND: Predicting early respiratory failure due to COVID-19 can help triage patients to higher levels of care, allocate scarce resources, and reduce morbidity and mortality by appropriately monitoring and treating the patients at greatest risk for deterioration. Given the complexity of COVID-19, machine learning approaches may support clinical decision making for patients with this disease. OBJECTIVE: Our objective is to derive a machine learning model that predicts respiratory failure within 48 hours of admission based on data from the emergency department. METHODS: Data were collected from patients with COVID-19 who were admitted to Northwell Health acute care hospitals and were discharged, died, or spent a minimum of 48 hours in the hospital between March 1 and May 11, 2020. Of 11,525 patients, 933 (8.1%) were placed on invasive mechanical ventilation within 48 hours of admission. Variables used by the models included clinical and laboratory data commonly collected in the emergency department. We trained and validated three predictive models (two based on XGBoost and one that used logistic regression) using cross-hospital validation. We compared model performance among all three models as well as an established early warning score (Modified Early Warning Score) using receiver operating characteristic curves, precision-recall curves, and other metrics. RESULTS: The XGBoost model had the highest mean accuracy (0.919; area under the curve=0.77), outperforming the other two models as well as the Modified Early Warning Score. Important predictor variables included the type of oxygen delivery used in the emergency department, patient age, Emergency Severity Index level, respiratory rate, serum lactate, and demographic characteristics. CONCLUSIONS: The XGBoost model had high predictive accuracy, outperforming other early warning scores. The clinical plausibility and predictive ability of XGBoost suggest that the model could be used to predict 48-hour respiratory failure in admitted patients with COVID-19.


Subject(s)
COVID-19/physiopathology , Hospitalization , Intubation, Intratracheal/statistics & numerical data , Machine Learning , Respiration, Artificial/statistics & numerical data , Respiratory Insufficiency/epidemiology , Aged , COVID-19/complications , Clinical Decision Rules , Early Warning Score , Emergency Service, Hospital , Female , Hospitals , Humans , Logistic Models , Male , Middle Aged , Patient Admission , ROC Curve , Respiratory Insufficiency/etiology , Retrospective Studies , SARS-CoV-2 , Triage
7.
Bioelectron Med ; 6: 14, 2020.
Article in English | MEDLINE | ID: covidwho-637250

ABSTRACT

BACKGROUND: The number of cases from the coronavirus disease 2019 (COVID-19) global pandemic has overwhelmed existing medical facilities and forced clinicians, patients, and families to make pivotal decisions with limited time and information. MAIN BODY: While machine learning (ML) methods have been previously used to augment clinical decisions, there is now a demand for "Emergency ML." Throughout the patient care pathway, there are opportunities for ML-supported decisions based on collected vitals, laboratory results, medication orders, and comorbidities. With rapidly growing datasets, there also remain important considerations when developing and validating ML models. CONCLUSION: This perspective highlights the utility of evidence-based prediction tools in a number of clinical settings, and how similar models can be deployed during the COVID-19 pandemic to guide hospital frontlines and healthcare administrators to make informed decisions about patient care and managing hospital volume.

8.
JAMA ; 323(20): 2052-2059, 2020 05 26.
Article in English | MEDLINE | ID: covidwho-101977

ABSTRACT

Importance: There is limited information describing the presenting characteristics and outcomes of US patients requiring hospitalization for coronavirus disease 2019 (COVID-19). Objective: To describe the clinical characteristics and outcomes of patients with COVID-19 hospitalized in a US health care system. Design, Setting, and Participants: Case series of patients with COVID-19 admitted to 12 hospitals in New York City, Long Island, and Westchester County, New York, within the Northwell Health system. The study included all sequentially hospitalized patients between March 1, 2020, and April 4, 2020, inclusive of these dates. Exposures: Confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection by positive result on polymerase chain reaction testing of a nasopharyngeal sample among patients requiring admission. Main Outcomes and Measures: Clinical outcomes during hospitalization, such as invasive mechanical ventilation, kidney replacement therapy, and death. Demographics, baseline comorbidities, presenting vital signs, and test results were also collected. Results: A total of 5700 patients were included (median age, 63 years [interquartile range {IQR}, 52-75; range, 0-107 years]; 39.7% female). The most common comorbidities were hypertension (3026; 56.6%), obesity (1737; 41.7%), and diabetes (1808; 33.8%). At triage, 30.7% of patients were febrile, 17.3% had a respiratory rate greater than 24 breaths/min, and 27.8% received supplemental oxygen. The rate of respiratory virus co-infection was 2.1%. Outcomes were assessed for 2634 patients who were discharged or had died at the study end point. During hospitalization, 373 patients (14.2%) (median age, 68 years [IQR, 56-78]; 33.5% female) were treated in the intensive care unit care, 320 (12.2%) received invasive mechanical ventilation, 81 (3.2%) were treated with kidney replacement therapy, and 553 (21%) died. As of April 4, 2020, for patients requiring mechanical ventilation (n = 1151, 20.2%), 38 (3.3%) were discharged alive, 282 (24.5%) died, and 831 (72.2%) remained in hospital. The median postdischarge follow-up time was 4.4 days (IQR, 2.2-9.3). A total of 45 patients (2.2%) were readmitted during the study period. The median time to readmission was 3 days (IQR, 1.0-4.5) for readmitted patients. Among the 3066 patients who remained hospitalized at the final study follow-up date (median age, 65 years [IQR, 54-75]), the median follow-up at time of censoring was 4.5 days (IQR, 2.4-8.1). Conclusions and Relevance: This case series provides characteristics and early outcomes of sequentially hospitalized patients with confirmed COVID-19 in the New York City area.


Subject(s)
Betacoronavirus , Comorbidity , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , Child , Child, Preschool , Coronavirus Infections/complications , Coronavirus Infections/mortality , Diabetes Complications , Female , Hospitalization , Humans , Hypertension/complications , Infant , Infant, Newborn , Male , Middle Aged , New York City/epidemiology , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/mortality , Risk Factors , SARS-CoV-2 , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL